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Abstract. Thermal conductivity of silicon and porous silicon nanowires based on the equation of phonon
radiative transport is theoretically evaluated. The thermal conductivities of silicon nanowires with square
cross-sections are found to match molecular dynamics simulation results reasonably well. It is shown that
the results of meso-porous silicon nanowires are about two orders of magnitude lower than that of silicon
nanowires in a wide range of temperature (50 K–300 K).

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 63.22.+m Phonons or vibrational
states in low-dimensional structures and nanoscale materials – 65.40.-b Thermal properties of crystalline
solids

1 Introduction

Transport in one- and two-dimensional structures has
been the subject of intensive research. A number studies
have carried on the conductivity of nanowires and quan-
tum wires based on the Born approximation [1,2], steady-
state Boltzmann’s equations [3,4]. As a consequence of
the rough boundaries scattering, the electrical conductiv-
ity values are reduced. However, the thermal behavior of
nanowires with boundary scattering is little understood
at this stage. Study of thermal phenomena in nanostruc-
tures requires to know the thermal conductivity of the
material. Recently it is found that the thermal conduc-
tivity values of meso-porous silicon (meso-PS) are about
two orders lower than corresponding data of bulk sili-
con (241 W/m K) [5–7]. It is explained that the size of
nanocrystallities are smaller than the phonon mean free
path (MFP) in bulk Si. So meso-PS is applied as new
thermal insulating substrate for microsensor design. It is
reported that the thermal conductivities of silicon (Si)
nanowires has the similar properties based on molecu-
lar dynamics (MD) simulation [8]. The value is close to
the thermal conductivity of SiO2 (1.4 W/m K), which is
known as good thermal insulators. So we can also apply
the Si nanowires array to the domain of thermal sensors
which require a thermal insulator. However, little effort
has been made to study the size dependence of the ther-
mal conductivity of nanowires. In this paper a study of
the thermal conductivity in nanowires is reported here us-
ing the equations of phonon radiative transport (EPRT)
method. We will explain the MD results of Si nanowires
with the EPRT, assuming a partly diffuse-scattering inter-
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face. We also extend our model to calculate the thermal
conductivity of meso-PS nanowires.

2 Equation of phonon radiative transport
for a wire

The EPRT was derived from the Boltzmann transport
equation (BTE) by phonons between two parallel plates.
Omini et al. [9] presented the solution of phonon trans-
port equation and thermal conductivity. Majumdar [10]
recently developed the EPRT from the original BTE for
thin films. Chen et al. established the EPRT on the in-
plane and out-plane thermal conductivity of quantum
wells [11], superlattices [12–14] based on the BTE. Volz
et al. [15] calculated the thermal conductivity in clamped
silicon nanowires with circular cross-sections on the ba-
sis of the EPRT. Now we extend the EPRT to thin square
wires case. Let us consider a wire with square cross-section
that has a side length a. The BTE of the wire can be writ-
ten in the relaxation time approximation (RTA) as

vz
∂f

∂T

dT
dz

+ vx
∂f

∂x
+ vy

∂f

∂y
= −f − f0

τ
· (1)

If wave vector q is chosen to have the linear form: q = ω/v,
the spectral phonon intensity, the flux of phonon energy
per unit time, per unit area perpendicular to the direction
of the phonon propagation, per unit solid angle in the
direction of phonon propagation and per unit frequency
interval around ω, can be expressed as

Iω(r, θ, φ) =
1

4π
vp(θ, φ)fω(r)~ωD(ω). (2)
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where D(ω) is the density of phonon states per unit vol-
ume, f(r) the phonon distribution function, vp(θ, φ) the
phonon group velocity in the direction of (θ, φ), θ and φ
are the polar and azimuthal angles, respectively. Iω0 is
equilibrium phonon intensity. A solution of equation (1)
can be obtained by introducing a deviation function iω:

Iω(r, θ, φ) = Iω0(z) + iω(r, θ, φ). (3)

and neglecting its derivative in the z-direction. Equa-
tion (1) becomes

sin θ cosφ
∂iω
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+ sin θ sinφ
∂iω
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+
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= − cos θ
dIω0

dz
·
(4)

where r is the coordinate directions vector, Λω =
τ(T, ω)vp is the phonon mean free path (MFP).

The solution of the above equation can be obtained by
the well established method in thermal radiation [16]
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where γ(= x/Λω) is the dimensionless x coordinate, γa(=
a/Λω), is the dimensionless side length of the wire, re-
spectively. Θ+ and Θ− are unit step functions. Θ+=0
for (x tanφ − y) < 0 and Θ+=1 for (x tanφ − y) > 0;
Θ−=0 for [(a − x) tanφ − (b − y)] < 0 and Θ−=1 for
[(a − x) tanφ − (b − y)] > 0. The local heat flux in the
z direction can be obtained by integration over the solid
angle as

q(γ) =
∫

4π

Iω(r, θ, φ) cos θ dΩ

=
4
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∫
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∫ ωD
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Here dΩ(=
∫ 2π

0
dφ sin θ dθ) is the differential solid an-

gle. The final expression for the heat flux depends on
the interface conditions, which determine the coefficients
i+ω (γ; θ, φ) and i−ω (γ; θ, φ) in equations (5, 6). Now we
consider the limiting case where the interface scatters
phonons purely diffusely. Substituting equations (5, 6) in
equation (7) and performing the integration, we obtain the
effective thermal conductivity perpendicular to the cross-
section
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2π2v

(
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×
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where

Ln(u) =
∫ π

2

0

exp
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cos2 θ sinn−3 θ dθ. (10)

where θD is the Debye temperature, v is the phonon group
velocity, µ = ~ω/kT, γa(T, µ) is the ratio between the side
length of the wire and phonon MFP, i.e.,

γa(T, µ) =
a

Λω(T, µ)
, withΛω(T, µ) = vτ(T, µ). (11)

The results for partly diffuse scattering case can be ob-
tained in terms of that for purely diffusing scattering

κ(T, a, ε) = (1− ε)2
∞∑
j=1

jεj−1κ(T, ja) (12)

where ε is the specular interface scattering fraction. The
value of ε represents the probability that the carrier is un-
dergoing a specular scattering event at the interface and
takes on from 0 to 1. The value of 1-ε represents the prob-
ability that the carrier is undergoing a diffuse scattering
event. The phonon relaxation time τ in the above equa-
tions can roughly be obtained based on the RTA. In RTA
the relaxation time can be calculated by the summation
of the inverse relaxation times for various scattering pro-
cesses. In our model, we consider Umklapp process (U),
isotope (or point) defect interaction (I), dislocation scat-
tering (D), and boundary scattering (B) [17–19]. In or-
der to take into account the different phonon scattering
mechanisms, we used the following expression for the to-
tal phonon scattering rate τ−1:

τ−1 =
(
τ−1
U + τ−1

I + τ−1
D + τ−1

B

)
= A exp(−θD/sT )T 3ω2 +Bω4 + Cω + v/L (13)

where the four terms represent the scattering of phonons
due to Umklapp process, at point defects, via dislocation
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Fig. 1. Thermal conductivity as a function of side length of
the nanowire at 200K. Data points from MD results and curves
from the solution of the EPRT.

scattering, finally, via the scattering at sample boundaries,
respectively. The parameter L is the characteristic length
scale of sample. A, B, C, are materials constants. The
parameter s for the Umklapp process is a constant char-
acteristic of the vibrational spectrum of the materials.

3 Application to silicon and meso-porous
silicon nanowires

Recently the thermal conductivity of Si nanowires is inves-
tigated using the MD simulations [8]. They use a solution
of BTE to explain the possibility of explaining the MD
results based on boundary scattering. Here, we will ex-
plore the MD results by solving the EPRT for thin square
wires. The calculation for the thermal conductivity of Si
nanowires is carried out based on equation (12). Since
not all the scattering parameters are well known for Si
nanowires, the interest was to obtain reasonable fitting
values for all the parameters through direct comparisons
between theory and the MD results. The overall set of
parameters for calculation are given in Table 1 [20,21].
Numerical results of equation (12) are plotted as curves
in Figures 1 and 2. The former shows the thermal con-
ductivity as a function of the side length for the square
cross-section. We note the EPRT and MD data are in
good agreement when the specular interface scattering
fraction ε value is about 0.25, which is quite different
from the results of reference [8]. The reason is that we
have calculated the thermal conductivity by the EPRT
with an overall relaxation time τ(T, µ), rather than the
BTE with a constant relaxation time τ . This result re-
veals that our model is more reasonable than that of BTE,
because τ is a function of frequency and temperature. Fig-
ure 2 shows the thermal conductivity as a function of the
specular interface scattering fraction ε. One can see that
the thermal conductivity is strongly temperature depen-
dent and increases in the range of small temperatures and

Fig. 2. Thermal conductivity as a function of temperature for
different values of the interface scattering fraction ε according
to the EPRT solution.

Table 1. Parameters used for thermal conductivity calculation
for Si nanowires at 200 K.

Parameter Values

Crystal density (kg m−3) 2.33×103

Elastic constant (N m−2) c11=16.67×1010

c12=6.45×1010

c44=7.99×1010

Debye temperature (K) 650

Umklapp parameter A (s K−3) 8.5×10−21

Isotope scattering parameter B (s3) 2.4×10−44

Dislocation scattering parameter C (s) 6.5×10−4

Boundary scattering length L (m) 0.5×10−2

has maximum value at T ≈ 100 K. The side length of
nanowires is a = 5 nm. For partially diffuse scattering
our model predicts a lower value of thermal conductivity
than that of purely specular scattering, e.g., ε = 1. It is
found that thermal conductivity values are in the interval
of 0.1–5 W/mK for T > 100 K, which is one to two or-
ders of magnitudes smaller than that of monocrystalline
Si (150 W/mK).

Finally we apply our model for a meso-PS nanowire
and compare the results with those for Si nanowire.
Lysenko et al. [6] reported a theoretical model describ-
ing thermal conductivity of meso-PS layers. Now we ex-
tend it to meso-PS nanowire with square cross-section,
which combines our model for a Si nanowire (Eq. (12))
and Lysenko’s model for a meso-PS layer. We find out the
thermal conductivity κmeso−PS of the meso-PS nanowire
can be written as
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kB
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Fig. 3. Comparison the thermal conductivity of meso-PS
nanowires and that of Si nanowires, as a function of the tem-
perature.

where rcr is the characteristic mean size of the nanocrys-
tallite, P is the porosity, g0 is the percolation strength.
The fixed relation between g0 and the porosity was given

g0 = (1− P )2. (15)

The temperature dependence of the thermal conductivity
for a meso-PS nanowire of side length a = 10 nm and
a Si nanowire of the same side length are shown in Fig-
ure 3. The characteristic mean size of the nanocrystallite
is rcr = 7.2 nm and the porosity is P = 0.62 [6]. One can
see a larger reduction occurs in the meso-PS nanowire
than that in the Si nanowire. The thermal conductivity
of meso-PS nanowires is about two orders of magnitude
lower than that of Si nannowires in a wide range of temper-
ature (50 K–300 K). The porosity of meso-PS nanowires
leads to the reduction of thermal conductivity. This result
indicates that it is possible to decrease the thermal con-
ductivity of meso-PS nanowires by increasing the porosity.
The above discussed decreases in the thermal conductivity
have been calculated for an isolated single nanowire. How-
ever, a microelectronic device always have a large number
of wires parallel. So we can embed nanowire arrays in ori-
ented meso-PS materials to obtain good thermal isolation.
It can be applied for many types of thermal sensors.

4 Conclusion

The EPRT for thin wires with square cross-section devel-
oped from BTE is firstly applied in predicting the thermal
conductivity of Si and meso-PS nanowires. Thermal con-
ductivity in the direction of thickness is then obtained
taking into account different scattering mechanisms under
RTA. The calculation shows that side length and porosity
for a nanowire have very strong effects on the thermal

conductivity. With a specular interface scattering fraction
value of 0.25, the numerical results of Si nanowires match
the MD results reasonably well. It is found that the ther-
mal conductivity of meso-PS nanowires are about two or-
ders of magnitude smaller than that of Si nanowires. It is
possible to decrease the thermal conductivity of the nanos-
tructures by decreasing the side length and increasing the
porosity. By synthesizing arrays of nanowires in meso-PS
materials, we can obtain an excellent thermal isolation
which can be applied for thermal sensors and thermal in-
sulating substrate.
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